Reservoirs of Hot Gas in the IGM and Galactic Halo

Michael Shull
In collaboration with:

John Stocke, Charles Danforth (CU)
Joe Collins, Mark Giroux (East Tenn State)
Jason Tumlinson (CU/Yale)

Columbia Meeting (May 7, 2008)

Outline of this Review

- Major Reservoirs of Gas: The IGM and Halo

- The low-redshift IGM (≥40% of Ω_b)

IGM Baryon and Metallicity Surveys

Absorber Distances to Galaxies

10% Zsolar (in filaments) <2% Z_{solar} (in voids)

Metal-Transport Distances (200-800 kpc)

- Galactic High-Velocity Clouds

Hot-Gas Cooling Time

 $t_{cool} \le 2 \text{ Gyr}$ (n > 10⁻⁴ cm⁻³ and Z = 0.2 solar)

Mass Infall Rate

0.1 M_{sun}/yr

Connection to IR Cirrus?

108 M_{sun} in gas

WHIM in the Cosmic Web

Cen & Ostriker (2006) simulations

Shock-heated Gas at 10⁵ - 10⁷ K

FUSE/HST Survey

7 km/s (HST) 20 km/s (FUSE)

(Danforth & Shull 2008, ApJ, 679, 194

- 28 AGN with known Lyα absorbers (STIS/E140M)
- Measured absorbers in hydrogen Lyman series, plus five metals [O VI, C III, Si III, Fe III, N V, C IV, Si IV]
 - z < 0.4 for Lyman lines (650 absorbers)
 - z < 0.2 for C III 977Å (found 39 systems)
 - z < 0.4 for O VI 1032, 1038Å (found 83 systems)
 - z < 0.4 for Si III 1206 (found 53 systems)

 $\mathcal{N}=650, \beta=1.73\pm0.04$

 $\mathcal{N}=83, \beta=1.98\pm0.11$

Danforth & Shull 2008, ApJ, 679, 194

Probed by X-ray lines, broad Lyα

Baryon Census (low-z)

 $(dN/dz)_{OVI} \Rightarrow Absorber size$ (tied to SDSS galaxies)

Dwarf galaxies
R ≈ 200-300 kpc
(0.03-0.1 L*)

Nearest-galaxy distributions

Stocke et al. (2006)

OVI absorbers track galaxies:

O VI absorbers lie within 800 kpc of L* galaxies

& within 200 kpc of 0.1 L* galaxies

Summary of Results:

- 1) We have accounted for ~50% of the baryons
 - 10% in collapsed structures (galaxies, clusters)
 - 30% in warm (10^4 K) photoionized gas (Ly α)
 - 10% in hot (10^{5.5} K) gas (O VI ultraviolet lines)

Other 50% may be in even hotter (106 K) gas

- 2) The hot (O VI) gas is close to galaxies, and thus is a reservoir for low-Z gas infall
 - Within 200 kpc of 0.1 L* galaxies (outflows?)
 - Cooling \Rightarrow 0.1 M_{sun}/yr infall to halos?

What's Next?

20x STIS (UV spectra at 15 km/s resolution

- Hubble SM4 (Oct 2008: Cosmic Origins Spectrograph)
- Perhaps a restoration of STIS (UV echelle spectra)
- OVII, OVIII, NVI, CV, CVI, NeIX from Con-X (2020?)
- Next-generation large (6-10m) UV/O space telescope?
- Theory: hot/cold gas interfaces, non-equilib.

COS-GTO Studies of IGM (253 orbits)

 $\Delta z \approx 10$ pathlength

Large-Scale Structure in Baryons

100 orbits 18 QSOs

Cloud sizes, Lyα, metal lines, blazars (broad Lyα absorbers), starburst wind outflows, galaxy halos, high-velocity clouds

WHIM in Cosmic Web and Halos

100 orbits17 QSOs

High ions (O IV/V/VI, N V, C IV), BLAs, survey redshifts z out to 0.67

Great Wall Tomography

19 orbits, 4 QSOs

27 orbits, 4 AGN

HST/COS Community Legacy Project?

QSO Absorption-Lines: $\Delta z \approx 40$ pathlength 500 orbits, I40 AGN (R = 20,000, S/N = 30)

- IGM Large-Scale Structure ("Cosmic Web")
- Multiphase IGM and ISM (including WHIM)
- IGM metallicity (content, evolution, transport)
- Chemical extent of galactic halos & winds
- Feedback (energy, radiation, metals) to IGM
- Galactic high-velocity clouds, AGN outflows

Such proposals will be accepted for HST Cycles 18-20 Director Discretionary Time added for Treasury Programs

Topic #2: High Velocity Clouds

HST/FUSE sightlines

Wakker (2003) HVC overlay

Temperature of MW Halo Gas

$$T_{gas} \approx (m_H \sigma^2/3k_B) \approx (2 \times 10^6 \text{ K})(\sigma_v/220 \text{ km/s})^2$$

Or, the (cosmological) halo virial temperature:

$$T_{vir} = (2 \times 10^6 \text{ K}) (M_{12})^{2/3} (\Omega_m h^2/0.13)^{1/3} [(1+z_{vir})/4]$$

Assumes:
$$\rho_{vir} \approx 178 \ \Omega_m \rho_{crit}$$
 $kT_{vir} \approx (GM_{vir} m_H/R_{vir})$ $M_{vir} = (4\pi/3) \ \rho_{vir} \ (R_{vir})^3$ $\rho_{crit,0} = (3H_o^2/8\pi G)$ (and $z_{vir} \approx 3$)

OVI (HVCs)

Coverage ≈ 60-80%

Sembach et al. (2003)

Si III (HVCs)

Coverage ≈ 90%

Collins, Shull, & Giroux (2008)

X-ray Absorption (OVI, OVIII) - Chandra PKS 2155-304 Sightline

[Fang, Canizares, & Yao 2007]

Mass Estimates (Hot Gas near Galaxy)

 $M_{hot} \approx (4\pi R^2) [N_{OVII} (1.32m_H)/(5x10^{-4}) Z_O f_{OVII}]$

 $\approx (1.3 \times 10^{13} \text{ M}_{sun}) (R_{Mpc})^2 (N_{16}) (0.2 Z_{sun} / Z_O) (f_{OVII})^{-1}$ plus dark matter on Mpc scales?

Cannot exceed 20% mass of the Local Group $(M_{LG} \approx 2 \times 10^{12} M_{sun}) \Rightarrow R_{hot} \leq 175 \text{ kpc}$

Hot-gas mass is probably ~ 10⁹ M_{sun}

(Distributed as exponential-halo - 50 kpc scale height)

Assume: $N_{OVII} \approx (10^{16} \text{ cm}^{-2}) N_{16}$, $R_{hot} \approx (1 \text{ Mpc}) R_{Mpc}$ Metallicity $Z_O \approx 20\%$ solar, $f_{OVII} \approx 0.40$ -0.98

"Highly Ionized HVCs" - with low ions too! (Collins, Shull, & Giroux 2005, 2006 ApJ)

Low ions (O I, C II, Si II, Fe II) along with O VI

Complex C -- I I sightlines (HST/FUSE) [Collins, Shull, & Giroux 2003, 2007]

[O/H] ranges from 10-30% solar

Very little trend of (O/H) with NHI

Complex C -- (O/H) Metallicities Range from 10-30% Z_{sun} in [O I/H I]

Collins, Shull, & Giroux 2007 ApJ, 657, 27 I (9 HVCs along 8 AGN sightlines)

Cooler Gas?

A quasar behind 100 μm IR cirrus (one of 45 studied with FUSE in H₂)

Gillmon & Shull (2006) ApJ

Transition in H₂ seen in IR Cirrus (2-3 MJy/sr or N_H $\approx 10^{20.4}$ cm⁻²)

Estimated Mass in IR Cirrus and H2 Gas

Very rough estimates (Gillmon/Shull 2006)

```
M_{H2} \approx 3000 \ M_{sun} (local cone, b > 30°)

M_{H2} \approx 10^7 \ M_{sun} (above entire disk)

M_{gas} \approx 10^8 \ M_{sun} (above entire disk)
```

These estimates are made by integrating f_{H2} and N_{HI} over the 100 μm cirrus template (NGP).

Where did gas and metals come from? What is the lifetime of the cirrus?

Could the cirrus come from cooling halo gas?

```
M_{hot} \approx (2-10) \times 10^7 \ M_{sun} \ (from OVI & OVII in halo)

t_{cool} \approx (2 \ Gyr) \ [T_6 / n_{-4} \ \Lambda_{-22.5}] \ (cooling at 20\% \ Z_{sun})
```

The cooling time will decrease as temperature drops below 10⁶ K (peak cooling rate is at 300,000 K)

$$(dM/dt)_{hot} \approx (M_{hot}/t_{cool})$$

 $\approx (0.05 M_{sun} yr^{-1})[n_{-4} \Lambda_{-22.5} / T_6]$

⇒Will accumulate 5×10⁷ M_{sun} per Gyr (comparable to M_{cirrus})

Summary

- Much of the halo and infalling HVCs have metallicities of 10-30% solar (Complex C mass-weighted mean is 13% solar).
- Hot halo gas (O VI and O VII) exists kinematically with cooler photoionized gas within 50-100 kpc. Reservoir 10⁹ M_{sun}. The HVCs are clumps of cooling gas, falling through hot halo, with conductive interfaces, shocks, and turbulent mixing layers.
- The Galactic thick disk contains $\sim 10^8$ M_{sun} of H₂-bearing cirrus. The halo contains $> 10^8$ M_{sun} of hot gas $(10^5 10^6$ K).

Some cooling halo gas could end up in the thick disk (IR cirrus), mixed with dust and metals from the disk